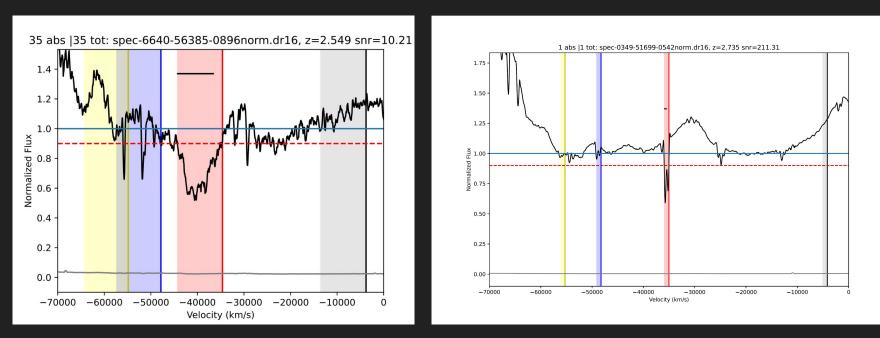

In search of extremely high-velocity outflows and ultra fast outflow coexistence

Advisor: Paola Rodriguez Hidalgo

Background

- Active galactic nuclei (AGN)
 - Composition
 - Supermassive blackhole
 - Accretion disk
 - Torus
 - Viewing Angle
 - Quasar

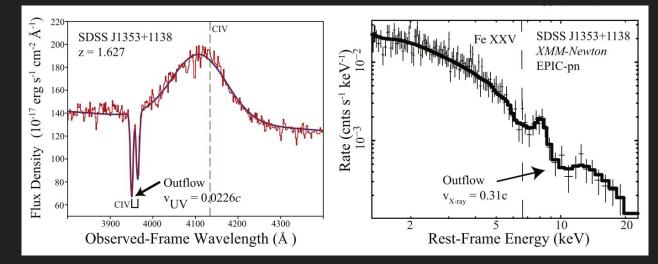
AGN composition [Gamez Rosas]


Main project

- Study outflows in the UV/Optical wavelength
 - Energy carrying ionized gas
 - CIV absorption
 - Sloan digital sky survey data release 16 (SDSS DR16)
 - Extremely high-velocity outflow (EHVO)
- Feedback information
 - Star formation
 - Galactic evolution

Artist impression of AGN outflow [AASNova]

Broad Absorption Lines vs Narrow Absorption Lines



Narrow absorption line (NAL)

Broad absorption line (BAL)

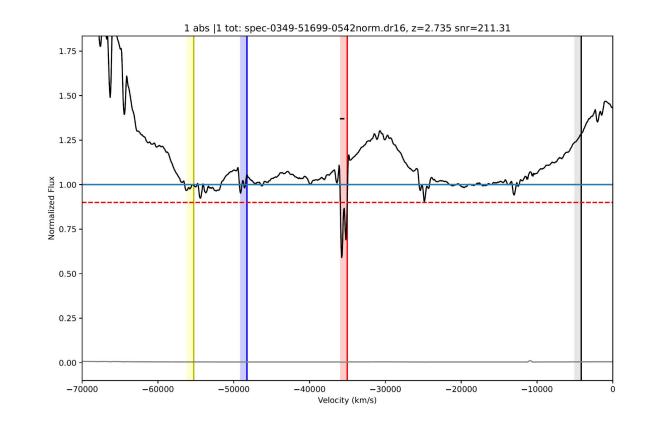
Subproject

- Possible coexistence of
 - ultra fast outflow (UFO)
 - Highly ionized gas
 - Velocity of 0.1c-0.3c at z<0.1
 - extremely high velocity outflow (EHVO)

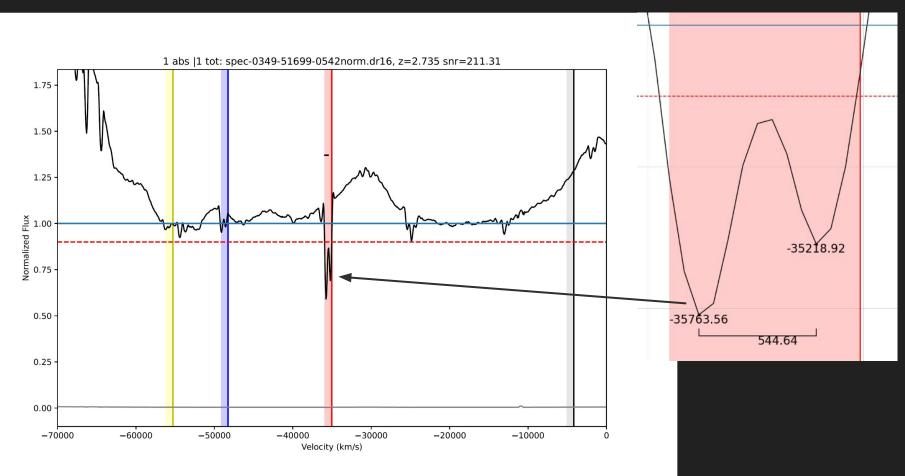
Detection method used to identify outflows. Light absorption (Left) vs X-ray absorption (Right) [Chartas]

- Redshift cutoff
 - o z>1.8
- Find them in SDSS DR16

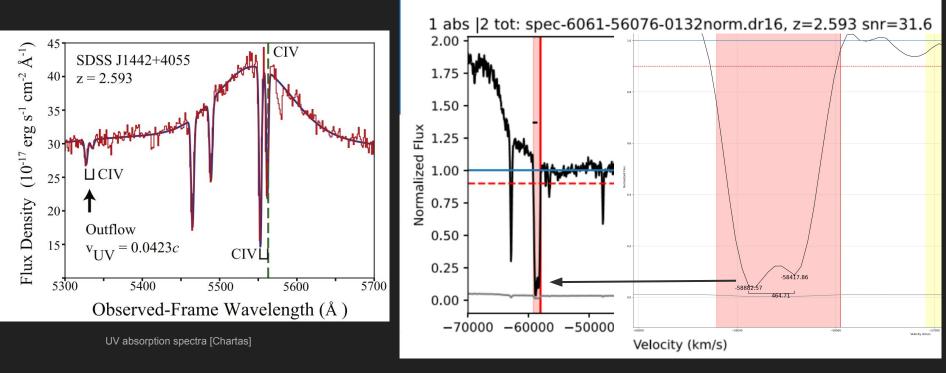
Quasars with UFO presence [Chartas]


Object	Classification	$z_{\rm s}$	z_1	$N_{ m H}^{Gal}$ a	$\log(M_{\rm BH})$
				$(10^{20} { m cm}^{-2})$	(M⊙)
APM 08279+5255	BALQSO	3.91	1.01	3.84	$10.0^{+0.1c}_{-0.1}$
HS 1700+6416	NALQSO	2.735	_b	2.66	$10.2^{+0.2d}_{-0.2}$
MG J0414+0534	QSO	2.64	0.9584	11.4	$9.0^{+0.2e}_{-0.2}$
SDSS J1442+4055	NALQSO	2.593	~ 0.4	1.30	$9.7^{+0.2d}_{-0.2}$
SDSS J1029+2623	NALQSO	2.197	0.58	1.78	$8.8^{+0.2d}_{-0.2}$
SDSS J1529+1038	NALQSO	1.984	~ 0.4	2.72	$8.9^{+0.2d}_{-0.2}$
SDSS J0904+1512	NALQSO	1.826	~ 0.3	3.69	$9.3^{+0.2d}_{-0.2}$
PG 1115+080	mini-BALQSO	1.72	0.31	3.53	$8.8^{+0.2f}_{-0.2}$
Q 2237+0305	QSO	1.695	0.0386	5.43	$9.1^{+0.4f}_{-0.4}$
SDSS J1353+1138	NALQSO	1.627	~ 0.25	1.86	$9.4^{+0.2d}_{-0.2}$
SDSS J1128+2402	NALQSO	1.608	$_h$	1.15	$8.7^{+0.2d}_{-0.2}$
PID352	QSO	~ 1.6	_b	0.70	$8.7^{+0.4g}_{-0.4}$
HS 0810+2554	NALQSO	1.51	0.08	3.94	$8.6^{+0.2f}_{-0.2}$
SDSS J0921+2854	NALQSO	1.41	0.445	2.30	$8.9^{+0.2d}_{-0.2}$

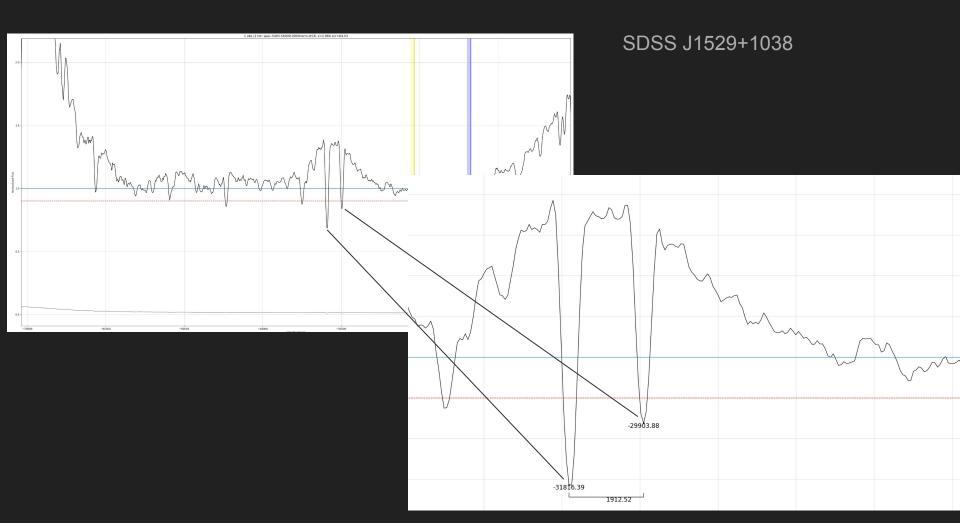
Quasar	Plate-MJD-Fiber	Date observed	
HS 1700+6416	0349-51699-542	06-04-2000	
SDSS J1442+4055	6061-56076-0132	05-29-2012	
SDSS J1029+2623	6464-56309-782	01-17-2013	
SDSS J1529+1038	5493-56009-0900	03-23-2012	
SDSS J0904+1512	5295-55978-0976	02-21-2012	


Sample of quasars used with observation date

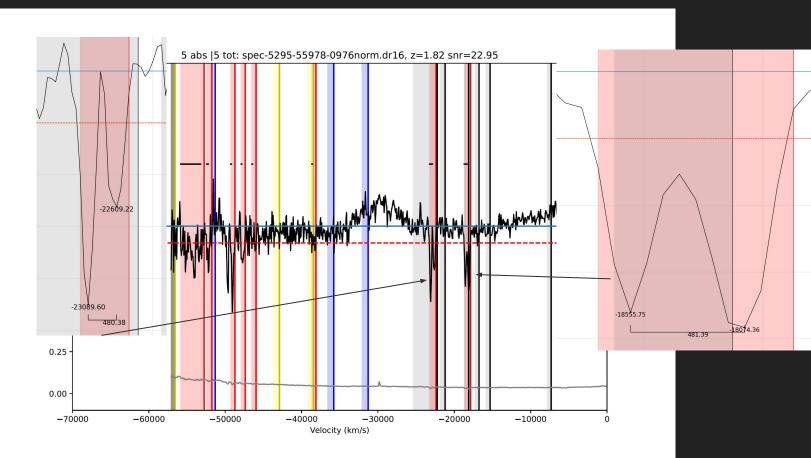
Method


- Normalize continuum
- Flag possible absorption
- Identify CIV absorption
 - Doublet separation distance


HS 1700+6416



SDSS J1442+4055



Our absorption search

SDSS J0904+1512

Limitations

• Sample size

• non-BAL

• Single snapshot of quasar

Object	Classification	$z_{\rm s}$	z_{l}	$N_{ m H}^{Gal}$ a	$\log(M_{\rm BH})$
				$(10^{20} { m cm}^{-2})$	$({ m M}_{\odot})$
APM 08279+5255	BALQSO	3.91	1.01	3.84	$10.0^{+0.1c}_{-0.1}$
HS 1700+6416	NALQSO	2.735	_ь	2.66	$10.2^{+0.2d}_{-0.2}$
MG J0414+0534	QSO	2.64	0.9584	11.4	$9.0^{+0.2e}_{-0.2}$
SDSS J1442+4055	NALQSO	2.593	~ 0.4	1.30	$9.7^{+0.2d}_{-0.2}$
SDSS J1029+2623	NALQSO	2.197	0.58	1.78	$8.8^{+0.2d}_{-0.2}$
SDSS J1529+1038	NALQSO	1.984	~ 0.4	2.72	$8.9^{+0.2d}_{-0.2}$
SDSS J0904+1512	NALQSO	1.826	~ 0.3	3.69	$9.3^{+0.2d}_{-0.2}$
PG 1115+080	mini-BALQSO	1.72	0.31	3.53	$8.8^{+0.2f}_{-0.2}$
Q 2237+0305	QSO	1.695	0.0386	5.43	$9.1^{+0.4f}_{-0.4}$
SDSS J1353+1138	NALQSO	1.627	~ 0.25	1.86	$9.4^{+0.2d}_{-0.2}$
SDSS J1128+2402	NALQSO	1.608	_h	1.15	$8.7^{+0.2d}_{-0.2}$
PID352	QSO	~ 1.6	_b	0.70	$8.7^{+0.4g}_{-0.4}$
HS 0810+2554	NALQSO	1.51	0.08	3.94	$8.6^{+0.2f}_{-0.2}$
SDSS J0921+2854	NALQSO	1.41	0.445	2.30	$8.9^{+0.2d}_{-0.2}$

References

- 1. Falcao, Anna Trindade, et al. Hubble Space Telescope Observations of [O~III] Emission in Nearby QSO2s: Physical Properties of the Ionised Outflows. 2020.
- 2. Chartas, G., et al. "Multiphase Powerful Outflows Detected in High-z Quasars." *The Astrophysical Journal*, vol. 920, no. 1, The American Astronomical Society, 2021, p. 24, https://doi.org/10.3847/1538-4357/ac0ef2.
- 3. Lyke, Brad W., et al. "The Sloan Digital Sky Survey Quasar Catalog: Sixteenth Data Release." *The Astrophysical Journal. Supplement Series*, vol. 250, no. 1, The American Astronomical Society, 2020, p. 8, https://doi.org/10.3847/1538-4365/aba623.
- 4. Pâris, I., et al. "The Sloan Digital Sky Survey Quasar Catalog: Ninth Data Release." *Astronomy and Astrophysics (Berlin)*, vol. 548, EDP Sciences, 2012, p. A66, https://doi.org/10.1051/0004-6361/201220142.
- 5. Rodríguez Hidalgo, Paola, et al. "Survey of Extremely High-Velocity Outflows in Sloan Digital Sky Survey Quasars." *The Astrophysical Journal*, vol. 896, no. 2, The American Astronomical Society, 2020, p. 151, <u>https://doi.org/10.3847/1538-4357/ab9198</u>.
- 6. Laha, Sibasish, et al. "Ionized Outflows from Active Galactic Nuclei as the Essential Elements of Feedback." *Nature Astronomy*, vol. 5, no. 1, Nature Publishing Group, 2020, pp. 13–24, <u>https://doi.org/10.1038/s41550-020-01255-2</u>.
- 7. Gámez Rosas, V. et al. Nature 602, 403–407 (2022).
- 8. https://aasnova.org/2018/02/07/a-new-look-at-speeding-outflows/